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Abstract 

 

Most computer models for engineering applications are 

developed to help assess a design or regulatory 

requirement.  As part of this task, the capability to 

quantify the impact of variability and uncertainty in the 

decision context is critical.  The requirement is often 

stated as:  the probability that some system response 

quantity exceeds a threshold value is less than some 

required probability.  This presentation will provide an 

outline and comparison of methods that are used for 

analyzing and propagating aleatory and epistemic 

uncertainties.  The methods are all available in a software 

tool called DAKOTA.   We will specifically focus on five 

classes of methods:  Latin Hypercube sampling, analytic 

reliability methods, polynomial chaos expansions, 

Dempster-Shafer theory of evidence, and “second-order” 

probability analysis.  Examples of each of the methods as 

applied to a simple engineering model will be provided.  

 
1.  Introduction 

 

Most computer models for engineering applications are 

developed to help assess a design or regulatory 

requirement.  As part of this task, the capability to 

quantify the impact of variability and uncertainty in the 

decision context is critical.  The requirement is often 

stated as:  the probability that some system response 

quantity exceeds a threshold value is less than some 

required probability.  This paper will provide an outline 

and comparison of methods that are used for analyzing 

and propagating aleatory and epistemic uncertainties in 

engineering models.  We will specifically focus on five 

classes of methods:  Latin Hypercube sampling, analytic 

reliability methods, polynomial chaos expansions, 

Dempster-Shafer theory of evidence, and “second-order” 

probability analysis.  Examples of each of the methods as 

applied to a simple engineering model will be provided.   

The computational cost of engineering simulation models 

is often quite expensive:  high fidelity finite-element 

simulations may require hours or days to run on dozens of 

processors.   Thus, understanding how the uncertainty 

propagation methods work and their relative advantages 

and costs is very important.   Additionally, response 

surface approximations (RSA) are often used as 

inexpensive replacements for computationally expensive 

computer simulations.  Once a RSA has been computed, it 

is cheap to evaluate this “meta-model” or surrogate, and 

thus the RSA is often used in a variety of contexts, 

including uncertainty quantification.  This paper will not 

focus on RSA.  However, some of the uncertainty 

quantification methods rely on such approximations and 

they will be mentioned where appropriate.  

 

The outline of the paper is as follows:  Section 2 provides 

background on uncertainty quantification (UQ).  Section 

3 describes an engineering example which will be used as 

a basis for examples and comparison of methods.  

Sections 4-8 describe particular UQ methods, and Section 

9 summarizes the methods and presents some current 

research areas of interest. 

 
2.  Uncertainty Quantification  

 

Incertitude (commonly referred to as “uncertainty”) can 

be formally classified as aleatory uncertainty and 

epistemic uncertainty.  Guidance from a Department of 

Energy document which provides guidelines for 

quantifying margins and uncertainties using modeling and 

simulation [Diegert et al.] states: “Where it is practical, 

calculation input characterizations should separate 

aleatory and epistemic uncertainties.” 

 

Aleatory uncertainty characterizes the inherent 

randomness in the behavior of the system under study.  

Alternative terminologies include: variability, stochastic 

uncertainty, irreducible uncertainty, and Type A 

uncertainty. Aleatory uncertainty is irreducible except 



through design modifications.  Examples of aleatory 

uncertainty are component failures or material properties 

derived from statistically significant testing under 

conditions relevant to the application.  Aleatory 

uncertainties are characterized by frequency distributions; 

and aleatory uncertainties propagated through a model 

will result in distributions for key system response 

quantities that should also carry a frequensic 

interpretation. 

 

Epistemic uncertainty characterizes the lack of knowledge 

about the appropriate value to use for a quantity that is 

assumed to have a fixed value in the context of a specific 

application.  Alternative terminologies include: state of 

knowledge uncertainty, subjective uncertainty, reducible 

uncertainty, and Type B uncertainty. Epistemic 

uncertainties are reducible through increased 

understanding (research), or increased data, or through 

more relevant data. Epistemic uncertainties are 

characterized degrees of “belief” and should not be given 

a frequensic interpretation. 

 

Currently, the following methods are commonly used to 

characterize and propagate aleatory uncertainty in input 

parameters through computer models.  These are all based 

on probability theory:  

1. Sampling 

2. Analytic reliability methods 

3. Polynomial Chaos Expansions 

 

Currently, we have the following methods to characterize 

and propagate epistemic uncertainty:  

1. Dempster-Shafer Theory of Evidence 

 

Finally, we have one way which is generally used to 

propagate uncertainty in combined analysis, where we are 

propagating both aleatory and epistemic uncertainty.  This 

is called “second-order” probability.  The second-order 

refers to the two types of uncertainty and does not refer to 

a second-order approximation of the underlying function.  

     1.  Second-order probability 

 

Sections 4-8 describe these UQ methods in more detail.  

Note that all of the methods presented in this paper are 

available for use in the DAKOTA software tool [Eldred et 

al., available at http://www.cs.sandia.gov/DAKOTA]. 

 
3.  Cantilever Beam Example 

 

This example is taken from the reliability optimization 

community.  The problem involves a simple cantilever 

beam as shown in Figure 1.  The goal is to understand 

how the deflection of the beam varies with respect to the 

length, width, and height of the beam as well as to applied 

load and elastic modulus of the beam. 

 

PP

x

y
 

 
Figure 1. Cantilever Beam Schematic 

 
The variables characterizing the beam problem are shown in Table 1, along with nominal values.  

 
Variable Description Nominal Value 

L Length 1 m 

W Width 1 cm 

H Height 2 cm 

I Area Moment of Inertia 1/12 WH
3
 

P Load 100 N 

E Elastic Modulus of Aluminum 

6061-T6 

69 GPa 

Table 1.  Variables characterizing the Cantilever Beam Problem 

 



The formula for beam deflection (assuming simplifying 

assumptions such as isotropic material properties of the 

beam, elastic displacement, and negligible beam mass) is: 

Deflection = PL
3
/3EI.  For this problem with 100N load, 

the deflection is approximately 7.2 cm. 

 

4. Sampling 

 

The most common method of incorporating uncertainty 

into simulations is to assume certain distributions on the 

uncertain input values, sample from those distributions, 

run the model with the sampled values, and do this 

repeatedly to build up a distribution of the outputs.  This 

is classical propagation of uncertainty.  The sampling 

techniques can be a variety of Monte Carlo methods, 

including stratified sampling (Latin hypercube sampling) 

which spread the samples over the space, or quasi-Monte 

Carlo sampling, which is a way of generating sequences 

that approximate a uniform distribution.   Figure 2 shows 

the concept of sampling, where N samples are taken from 

distributions on inputs (in this case, 3 input variables), 

each one is run through the simulation model, resulting in 

N realizations on the outputs.   
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Figure 2.  Sampling Approach to Propagate 

Uncertainties 

At Sandia, we often use Latin Hypercube Sampling 

(LHS) [Swiler and Wyss].  LHS is a stratified sampling 

method where one sample is chosen from each of N 

equally probable strata over the support of the 

distribution.  LHS is more efficient than pure Monte 

Carlo in the sense that it requires fewer samples to 

achieve the same accuracy in statistics (variance of the 

mean, for example).   

 

A rule of thumb is to have the number of samples be at 

least 10 times the number of uncertain variables.  For 

example, if you have 15 uncertain variables, you should 

specify at least 150 samples.   

 

For the cantilever beam example, we treat multiple inputs 

as uncertain, distributed with the probability distributions 

specified in Table 2.  Note that 3 variables are uncertain 

in this problem, L, P, and E.  

 

Variable Distribution Distribution Parameters 

L Normal Mean = 1m 

Std. Dev. = 0.01 m 

W Fixed 1 cm 

H Fixed 2 cm 

P Normal Mean = 100 N 

Std. Dev. = 5 N 

E Normal Mean = 69 GPa 

Std. Dev. = 13.8 GPa 

Table 2.  Uncertain Variable Specification for Sampling 

 

When generating 1000 samples from these three normal 

distributions and then using the sample values to calculate 

displacement of the beam, we obtain the histogram of 

displacement shown in Figure 3: 
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Figure 3.  Histogram of 1000 Input Samples of 

Displacement 

 
If we plot the output samples cumulatively, we get the 

cumulative distribution function (CDF) shown in Figure 

4:  
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Figure 4.  CDF of 1000 Input Samples of Displacement 



 
We can also visually look at the correlations of the output 

with respect to the inputs. For example, the following two 

scatter plots in Figures 5 and 6 show that the 

displacement is not strongly correlated to the change in 

load but very strongly negatively correlated to the 

modulus of elasticity.   The graphs also allow one to 

quickly identify outliers. 
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Figure 5.  Scatter plot of displacement vs. load 
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Figure 6.  Scatter plot of displacement vs. modulus 

 
The example presented in Figures 3-6 above, with 3 

uncertain variables (L, P, and E), will be used as the basis 

for the subsequent uncertainty analysis methods. 

 

5.  Analytic Reliability  

 
A full discussion of the theory behind analytic reliability 

methods will not be presented here.  There is a good 

discussion in Section 6.3 of the DAKOTA User’s Manual 

[Eldred et al.] and in [Haldar and Mahadevan]. Reliability 

methods provide an alternative approach to uncertainty 

quantification which can be less computationally 

demanding than sampling techniques.  Reliability 

methods for uncertainty quantification are based on 

probabilistic approaches that compute approximate 

response function statistics based on specified uncertain 

variable distributions.  These response statistics include 

response mean, response standard deviation, and 

cumulative or complementary cumulative distribution 

functions (CDF/CCDF).  These methods are often more 

efficient at computing statistics in the tails of the response 

distributions (events with low probability) than sampling 

based approaches since the number of samples required to 

resolve a low probability can be prohibitive. 

  

The methods all answer the fundamental question:  Given 

a set of uncertain input variables, X, and a scalar response 

function, g, what is the probability that the response 

function is below or above a certain level, z ?  This 

probability calculation involves a multi-dimensional 

integral over an irregularly shaped domain of interest.  

The reliability methods all involve the transformation of 

the user-specified uncertain variables in x-space to a 

space of independent standard Gaussian random 

variables, possessing a mean value of zero and unit 

variance called u-space.  The region of interest is also 

mapped to the transformed space.  In the transformed 

space, probability contours are circular in nature and the 

multi-dimensional integrals can be approximated by 

simple functions of a single parameter, β, called the 

reliability index.  β is the minimum Euclidean distance 

from the origin in the transformed space to the response 

surface. This point is also known as the most probable 

point (MPP).   The distance of the MPP from the origin 

has the meaning of the number of input standard 

deviations separating the mean response from a particular 

response threshold.  There are many reliability methods:  

most of them involve different ways to approximate the 

limit state, solve for the MPP, or integrate to calculate the 

probabilities.   

 

Note that although analytic reliability methods may 

require fewer function evaluations than sampling 

methods, they do require that finite difference or analytic 

gradients of the output variable with respect to the 

uncertain inputs be provided.  Also, Hessian information, 

if available, tends to help the performance of these 

methods.   Finally, note that each point in a cumulative 

distribution function requires performing an optimization 

run.   

 

Figure 7 shows an example CDF from an analytic 

reliability calculation, using the inputs specified in Table 

2.  Note that 11 points were calculated along the CDF, for 



a total of 267 function evaluations.  This is a relatively 

“easy” function for reliability analysis, since the inputs 

are normal and the function is not noisy or ill-behaved 

with respect to the inputs.  The statistics from the CDF in 

Figure 7 compare well with the statistics from sampling. 
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Figure 7.  CDF based on Reliability Method 

 

6.  Polynomial Chaos Expansions 

 

The polynomial chaos expansion (PCE) method is a 

general framework for the approximate representation of 

random response functions in terms of finite-dimensional 

series expansions.  PCE is a type of stochastic response 

surface method [Ghanem and Red-Horse].  These 

methods approximate both the inputs and the outputs of 

the uncertain system through series expansions of 

standard random variables.  In PCE, the series expansion 

is based on unit Gaussian random variables.  The 

expansion is based on Hermite polynomials which are 

functions of the Gaussian random variables.   The goal of 

a PCE analysis is to determine the unknown coefficients 

of the Hermite polynomials in the series expansion.   

Usually, these coefficients can be calculated from a 

limited number of model simulations.   

 

Conceptually, the propagation of input uncertainty 

through a model using PCE consists of the following 

steps: (1) input uncertainties are expressed in terms of a 

set of unit Gaussian random variables, (2) a functional 

form such as Hermite polynomials is assumed for 

selected outputs, and (3) the parameters of the functional 

approximation are determined.  

 

An important distinguishing feature of the PCE 

methodology is that the solution series expansions are 

expressed as random processes, not merely as statistics as 

in the case of many nondeterministic methodologies.  

PCE can be most efficient when there is some additional 

information from the physics of the problem about what 

type of approximating polynomials are most appropriate.  

In DAKOTA, we have implemented a “black-box” or 

“non-intrusive” version of PCE.  In this approach, a 

number of samples are taken initially of the real function, 

then those are used to help solve for the coefficients of 

the expansion.   The samples can be based on Latin 

Hypercube sampling, quadrature points, imported from a 

file, or stochastic collocation points.  The DAKOTA 

results can give you percentile values if you request them.  

The DAKOTA output also lists the coefficients of the 

expansion so that you could, if desired, sample from 

many unit random normal variables and construct a 

distribution of the output based on plugging the unit 

normal variables, the Hermite polynomials, and the 

expansion coefficients into the correct expansion formula.  

 

Figure 8 shows two cumulative distribution function from 

PCE calculations, again based on the inputs shown in 

Table 2.  One CDF is based an initial set of 250 LHS 

samples, with finite differencing to calculate derivatives, 

for a total of 1750 function evaluations.  The second CDF 

is based on quadrature points.  The order of the 

quadrature is five in each uncertain dimension, for a total 

of 125 integration points. The expansion order (the 

highest order of the orthogonal polynomials appearing in 

the expansion) is two for both CDFs.  The percentiles for 

both CDFs were based on using the chaos expansion 

formulas and evaluating them at 10,000 LHS sample 

points. 
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 Figure 8.  CDF based on Polynomial Chaos Expansion 

Method 

 
7.  Dempster-Shafer Evidence Theory (Epistemic) 

 
The previous uncertainty propagation methods (sampling, 

analytic reliability, and polynomial chaos expansions) 

dealt with uncertain input variables that can be specified 

by a probability distribution.  These approaches apply 

primarily to propagating uncertain variables characterized 

by aleatory uncertainty.   This section discusses one 

approach to propagating epistemic uncertain variables.  

 

There are many ways of representing epistemic 

uncertainty, including fuzzy sets, possibility theory, and 

imprecise probability.  At Sandia we have chosen to use 

Dempster-Shafer, in part because it is a generalization of 

classical probability theory which allows the simulation 



code to remain black-box (it is non-intrusive to the code) 

and because the Dempster-Shafer calculations use much 

of the probabilistic framework we already have in place. 

[Oberkampf and Helton]  Dempster-Shafer has two 

measures of uncertainty, belief and plausibility.  

Together, these define an interval-valued probability 

distribution, not a single probability distribution.   

 

Dempster-Shafer Theory of Evidence may be used to 

perform epistemic analysis.  In Dempster-Shafer evidence 

theory, the epistemic uncertain input variables are 

modeled as sets of intervals.  Note that each variable may 

be defined by one or more intervals.  The user assigns a 

basic probability assignment (BPA) to each interval, 

indicating how likely it is that the uncertain input falls 

within the interval.  The BPAs for a particular uncertain 

input variable must sum to one.  The intervals may be 

overlapping, contiguous, or have gaps.  Dempster-Shafer 

has two measures of uncertainty, belief and plausibility.  

The intervals are propagated to calculate belief (a lower 

bound on a probability value that is consistent with the 

evidence) and plausibility (an upper bound on a 

probability value that is consistent with the evidence).  

Together, belief and plausibility define an interval-valued 

probability distribution, not a single probability 

distribution.   

 

The method for calculating Dempster-Shafer intervals is 

computationally very expensive.  Many hundreds of 

thousands of samples are taken over the space.  Each 

combination of input variable intervals defines an input 

“cell.”  By interval combination, we mean the first 

interval of the first variable paired with the first interval 

for the second variable, etc.  Within each interval 

calculation, it is necessary to find the minimum and 

maximum function value for that interval “cell.”   These 

min and max values are aggregated to create the belief 

and plausibility curves.  The Dempster-Shafer method 

may use a surrogate model and/or optimization methods.  

The accuracy of the Dempster-Shafer results is highly 

dependent on the number of samples and the number of 

interval combinations.  If one has a lot of interval cells 

and few samples, the estimates for the minimum and 

maximum function evaluations is likely to be poor.  

 

We demonstrate two examples of the propagation of 

uncertainty with Dempster-Shafer structures.  The 

Dempster-Shafer structures are shown in Table 3.  Note 

that for both of these examples, width and height of the 

beam are fixed at 1cm and 2cm, respectively. The three 

uncertain variables are L, E, and P. The first example is 

very simple: each uncertain variable is represented by one 

interval, which means that the uncertain variable can take 

any number of possible values between the upper and 

lower bound on that interval.  For example, the load P can 

take a value anywhere between 85 and 115 Newtons.  

Note that this does NOT imply that any value within that 

interval is equally likely (as would be the case with a 

uniform distribution).  Rather, the interpretation is that 

any value within that interval is a possibility or possible 

realization.   Table 3b shows the second example, where 

each variable is subdivided into 3 possible intervals.  The 

middle interval is the most likely interval, in that it has a 

basic probability assignment of 0.5:  there is a 50% 

chance that P will fall in the interval [90,110], for 

example.  The outer intervals each have a BPA of 0.25.  

The intervals in this example were constructed for the 

purpose of demonstration.  Ideally, one would elicit 

expert judgment to construct the intervals and their 

associated BPAs.   Also, the intervals defined in Table 3b 

are all contiguous, but there is no requirement that they 

be:  the intervals can be overlapping or disjoint. 

   
Variable Intervals BPA 

L [0.97, 1.03] m 1.0 

P [85,115] N 1.0 

E [27.6,110.4]GPa 1.0 

Table 3a. Epistemic Variables for the Cantilever Beam 

Problem, Example 1 

 

Variable Intervals BPA 

L [0.97, 0.98] [0.98, 1.02] 

[1.02,1.03] m 

0.25, 0.5, 

0.25 

P [85,90] [90,110] [110,115] 

N 

0.25, 0.5, 

0.25 

E [27.6,41.4] [41.4, 96.6] 

[96.6,110.4]GPa 

0.25, 0.5, 

0.25 

Table 3b. Epistemic Variables for the Cantilever Beam 

Problem, Example 2 

Based on the intervals defined for L, P, and E, we 

performed the Dempster-Shafer calculations. The 

resulting belief and plausibility bounds are shown in 

Figure 9.  For example 1, since each uncertain variable is 

defined by one interval, all we can say is that the output 

falls within one interval.  In example 1, displacement falls 

between 3.75 cm and 20.53 cm.     Note that the Dempster 

Shafer calculations for this example were based on 1000 

samples; the results will change slightly as the number of 

samples changes. 

 

The cumulative belief and plausibility functions for 

Example 2 are much tighter than those in Example 1.  

This is due to the fact that there was more structure to the 

intervals defining the three uncertain variables in 

Example 2.  Together, belief and plausibility provide 

bounds as to where the true, unknown cumulative 

distribution function may fall.   For a given displacement 

value, the lower bound of that interval is the belief and 

the upper bound is the plausibility  The bounds on the 

unknown “true” CDF given by belief and plausibility are 



often quite large, reflecting the uncertainty in the input 

variables as defined by the intervals. 
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Figure 9.  CBF/CPF based on Dempster-Shafer 

Evidence Theory 

 

 
8.  Second-Order Probability 

 
This section discusses the case where we are trying to 

propagate both aleatory and epistemic uncertainty.  A 

common situation is where one may know the form of the 

probability distribution for an uncertain variable (for 

example, that it is distributed normally or lognormally), 

but one is not sure of the parameters governing the 

distribution.  In this case, the analysis is done with an 

outer loop and an inner loop.  In the outer loop, the 

epistemic variables are specified.  In this example, the 

epistemic variables are specified as intervals on parameter 

values such as means or standard deviations of uncertain 

variables.  A particular value is selected from within the 

specified intervals.  Then, this value is sent to the inner 

loop.  In the inner loop, the values of the distribution 

parameters are set by particular realizations of the 

epistemic variables, and the inner loop performs sampling 

on the aleatory variables in the usual way (e.g., a LHS 

sample is taken).   Figure 10 shows the sampling structure 

of second-order probability. 
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Figure 10.  Second-order Probability 

 
Second-order probability may be expensive since we have 

two sampling loops.  However, it has the advantage that it 

is easy to separate and identify the aleatory vs. epistemic 

uncertainty.   Each particular set of epistemic variable 

values generates an entire CDF for the response quantities 

based on the aleatory uncertainty.  So, for example, if one 

had 50 values or samples taken of the epistemic variables, 

one would have 50 CDFs.   When you plot the 50 CDFs, 

you get the upper and lower bound on the family.  Thus, 

the results look very similar to a Dempster-Shafer 

analysis.   

 

Table 4 outlines the uncertain variables for second-order 

probability sampling for the cantilever beam problem. 

 

Variable Epistemic Mean Distribution 

L [0.98, 1.02] m Normal(epistemic 

mean, 0.01) m 

P [90,110] N Normal(epistemic 

mean, 5) N 

E [41.4,96,6] GPa Normal(epistemic 

mean, 13.8) GPa 

Table 4. Epistemic Variables for the Cantilever Beam 

Problem, Example 1 

 
For the results shown in Figure 11, we took 20 outer loop 

samples and 100 inner loop samples.   We get inner and 

outer bounds on the family of CDFs generated by the 20 

outer loop samples on the epistemic variables.  Two 

particular realizations of CDFs (based on 100 inner loop 

samples) are also plotted. 
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Figure 11.  Second-order Probability Results for the 

Cantilever Beam Problem 

 

9.  Summary of UQ Methods 

 

This paper has outlined five methods that are used by the 

engineering community to propagate uncertainty in 

computational models.   These five methods are all 

available in the DAKOTA software tool.  Three of these 

methods focus on propagation of aleatory uncertainties:  

sampling, analytic reliability, and polynomial chaos 

expansions.  Dempster-Shafer evidence theory is used to 

propagate epistemic uncertainty, and second-order 

probability can handle both.   When choosing a method, 

one should consider a variety of factors, including the 

computational cost of the function evaluations, the 

transparency of the method, the type of outputs generated, 

and the question being addressed (e.g., is the goal to get 

an accurate assessment of the response level at a 

particular percentile, a reliability/failure probability, the 

mean or variance of the output distribution, is an entire 

output CDF necessary, etc.).   The transparency of the 

method is very important in regulatory applications and 

environments where results may have to be repeated 

under a variety of conditions.  Sampling methods are the 

most “transparent” in terms of being able to trace a 

particular set of inputs to a particular output value on the 

CDF.   One class of methods this paper did not address is 

Bayesian methods.   Bayesian methods require the 

specification of a likelihood function (i.e., the likelihood 

of obtaining a particular set of computational results 

based on data.)  In general, this is difficult to do in a 

general-purpose framework without a significant set of 

additional statistical assumptions.  For this reason, 

Bayesian methods have not been included in this 

presentation. 
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